\begin{tabbing} (\=(((((((D 0) \+ \\[0ex]CollapseTHEN (RW assert\_pushdownC ({-}1)))$\cdot$) \\[0ex]CollapseTHENA ( \-\\[0ex](\=Auto\_aux (first\_nat 1:n) ((first\_nat 1:n),(first\_nat 3:n)) (first\_tok :t) inil\_term)))$\cdot$)\+ \\[0ex] \\[0ex]CollapseTHEN (HypSubst ({-}1) ({-}3)))$\cdot$) \\[0ex]CollapseTHEN ((Auto\_aux (first\_nat 1:n \-\\[0ex]) ((first\_nat 1:n),(first\_nat 3:n)) (first\_tok :t) inil\_term)))$\cdot$ \end{tabbing}